中文
Home
Scientific Research
Research Projects
Paper Publications
Patents
Published Books
Teaching Research
Teaching Resources
Teaching Information
Award information
personal honors
scientific research awards
teaching awards
Enrollment Information
Student Information
My Album
Blog
Personal Homepage
中
Home
Scientific Research
Research Projects
Paper Publications
Patents
Published Books
Teaching Research
Teaching Resources
Teaching Information
Award information
personal honors
scientific research awards
teaching awards
Enrollment Information
Student Information
My Album
Blog
徐焕良
Professor
Supervisor of Doctorate Candidates
School/Department: College of Artificial Intelligence
Education Level:With Certificate of Graduation for Doctorate Study
Degree:Doctoral degree
Professional Title:
Professor
Alma Mater:
南京航空航天大学机电学院博士毕业
MORE
Paper Publications
Home
>>
Scientific Research
>>
Paper Publications
任守纲,万升,顾兴健,袁培森,徐焕良.Semi-Supervised hyperspectral image classification using local low-rank representation,REMOTE SENSING LETTERS,2019,10(2):195-204(Participating authors)
基于光子传输模拟的苹果品质高光谱检测源探位置研究,农业工程学报,2019,35(4):281-289(Correspondence Author)
袁培森,翟肇裕,钱淑韵,徐焕良.基于Multi-probe LSH的菊花花型相似性计算,农业机械学报,2019,50(7):208-215(Correspondence Author)
赵青松,曾庆凯,刘西蒙,徐焕良.基于可重随机化混淆电路的可验证计算,软件学报,2019,30(2):399-415(Participating authors)
袁培森,杨承林,宋玉红,翟肇裕,徐焕良.基于Stacking集成学习的水稻表型组学实体分类研究,农业机械学报,2019,50(11):144-152(Correspondence Author)
Hyperspectral image classification based on robust discriminative extraction of multiple spectral-spatial features,INTERNATIONAL JOURNAL OF REMOTE SENSING,2019,40(15):5812-5834(Participating authors)
袁培森,Zhai, Zhaoyu,Martinez, Jose-Fernan,徐焕良.An End-to-End-Based Low Dimensional Binary Embedding for Chrysanthemum Phenotypic Petal Similarity Evaluation,IEEE ACCESS,2019,7:152214-152223(Correspondence Author)
薛卫,杨荣丽,赵南,徐焕良,任守纲.空间密度相似性度量K-means算法,小型微型计算机系统,2018,39(1):53-57(Participating authors)
任守纲,刘鑫,顾兴健,王浩云,袁培森,徐焕良.基于R-BP神经网络的温室小气候多步滚动预测模型,中国农业气象,2018,39(5):314-324(Correspondence Author)
袁培森,任守纲,徐焕良,Chen Jin.Chrysanthemum Abnormal Petal Type Classification using Random Forest and Over-sampling,IEEE International Conference on Bioinfomatics and Biomedicine 2018,2018,:275-278(Participating authors)
total128 6/13
first
previous
next
last
Page
GET MORE